Frobenius and Mashke type Theorems for Doi-Hopf modules and entwined modules revisited: a unified approach

نویسندگان

  • Tomasz Brzeziński
  • Shenglin Zhu
چکیده

We study when induction functors (and their adjoints) between categories of Doi-Hopf modules and, more generally, entwined modules are separable, resp. Frobenius. We present a unified approach, leading to new proofs of old results by the authors, as well as to some new ones. Also our methods provide a categorical explanation for the relationship between separability and Frobenius properties.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Frobenius Properties and Maschke-type Theorems for Entwined Modules

Entwined modules arose from the coalgebra-Galois theory. They are a generalisation of unified Doi-Hopf modules. In this paper, Frobenius properties and Maschke-type theorems, known for Doi-Hopf modules are extended to the case of entwined modules.

متن کامل

Doi-Koppinen Hopf Modules Versus Entwined Modules

A Hopf module is an A-module for an algebra A as well as a C-comodule for a coalgebra C, satisfying a suitable compatibility condition between the module and comodule structures. To formulate the compatibility condition one needs some kind of interaction between A and C. The most classical case arises when A = C =: H is a bialgebra. Many subsequent variants of this were unified independently by...

متن کامل

Rational Modules for Corings

The so called dense pairings were studied mainly by D. Radford in his work on coreflexive coalegbras over fileds [Rad73]. They were generalized in [G-T98] and [AG-TL2001] to the so called rational pairings over commutative ground rings to study the interplay between the comodules of an R-coalgebra C and the modules of an R-algebra A that admits an R-algebra morphism κ : A −→ C∗. Such pairings, ...

متن کامل

ar X iv : m at h / 04 09 59 9 v 3 [ m at h . Q A ] 1 A pr 2 00 5 YETTER - DRINFELD MODULES OVER WEAK BIALGEBRAS

We discuss properties of Yetter-Drinfeld modules over weak bialgebras over commutative rings. The categories of left-left, left-right, right-left and right-right Yetter-Drinfeld modules over a weak Hopf algebra are isomorphic as braided monoidal categories. Yetter-Drinfeld modules can be viewed as weak Doi-Hopf modules, and, a fortiori, as weak entwined modules. If H is finitely generated and p...

متن کامل

Yetter-drinfeld Modules over Weak Bialgebras

We discuss properties of Yetter-Drinfeld modules over weak bialgebras over commutative rings. The categories of left-left, left-right, right-left and right-right Yetter-Drinfeld modules over a weak Hopf algebra are isomorphic as braided monoidal categories. Yetter-Drinfeld modules can be viewed as weak Doi-Hopf modules, and, a fortiori, as weak entwined modules. If H is finitely generated and p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000